Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Microbiol Spectr ; : e0392322, 2022 Nov 08.
Article in English | MEDLINE | ID: covidwho-2108239

ABSTRACT

In November 2021, the World Health Organization declared the Omicron variant (B.1.1.519) a variant of concern. Since then, worries have been expressed regarding the ability of usual diagnostic tests to detect the Omicron variant. In addition, some recently published data suggested that the salivary reverse transcription (RT)-PCR might perform better than the current gold standard, nasopharyngeal (NP) RT-PCR. In this study, we aimed to compare the sensitivities of nasopharyngeal and saliva RT-PCR and assess the diagnostic performances of rapid antigen testing (RAT) in nasopharyngeal and saliva samples. We conducted a prospective clinical study among symptomatic health care professionals consulting the occupational health service of our hospital for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) screening and hospitalized patients in internal medicine/intensive care wards screened for SARS-CoV-2 with COVID-19-compatible symptoms. A composite outcome considering NP PCR and/or saliva PCR was used as a reference standard to define COVID-19 cases. A total of 475 paired NP/saliva specimens have been collected with a positivity rate of 40% (n = 192). NP and salivary RT-PCR exhibited sensitivities of 98% (95% CI, 94 to 99%) and 87% (95% CI, 81 to 91%), respectively, for outpatients (n = 453) and 94% (95% CI, 72 to 99%) and 69% (95% CI, 44 to 86%), respectively, for hospitalized patients (n = 22). Nasopharyngeal rapid antigen testing exhibited much lower diagnostic performances (sensitivity of 66% and 31% for outpatients and inpatients, respectively), while saliva RAT showed a sensitivity of less than 5% in both groups. Nasopharyngeal RT-PCR testing remains the gold standard for SARS-CoV-2 Omicron variant screening. Salivary RT-PCR can be used as an alternative in case of contraindication to perform NP sampling. The use of RAT should be limited to settings where access to molecular diagnostic methods is lacking. IMPORTANCE The Omicron variant of concern spread rapidly since it was first reported in November 2021 and currently accounts for the vast majority of new infections worldwide. Recent reports suggest that saliva sampling might outweigh nasopharyngeal sampling for the diagnosis of the Omicron variant. Nevertheless, data investigating the best diagnostic strategy specifically for the Omicron variant of concern remain scarce. This study fills this gap in current knowledge and elucidates the question of which strategy to use in which patient. It provides a new basis for further improving COVID-19 screening programs and managing patients suspected to have COVID-19.

2.
BMJ Open ; 11(7): e049232, 2021 07 05.
Article in English | MEDLINE | ID: covidwho-1297975

ABSTRACT

OBJECTIVE: To assess the SARS-CoV-2 transmission in healthcare workers (HCWs) using seroprevalence as a surrogate marker of infection in our tertiary care centre according to exposure. DESIGN: Seroprevalence cross-sectional study. SETTING: Single centre at the end of the first COVID-19 wave in Lausanne, Switzerland. PARTICIPANTS: 1874 of 4074 responders randomly selected (46% response rate), stratified by work category among the 13 474 (13.9%) HCWs. MAIN OUTCOME MEASURES: Evaluation of SARS-CoV-2 serostatus paired with a questionnaire of SARS-CoV-2 acquisition risk factors internal and external to the workplace. RESULTS: The overall SARS-CoV-2 seroprevalence rate among HCWs was 10.0% (95% CI 8.7% to 11.5%). HCWs with daily patient contact did not experience increased rates of seropositivity relative to those without (10.3% vs 9.6%, respectively, p=0.64). HCWs with direct contact with patients with COVID-19 or working in COVID-19 units did not experience increased seropositivity rates relative to their counterparts (10.4% vs 9.8%, p=0.69 and 10.6% vs 9.9%, p=0.69, respectively). However, specific locations of contact with patients irrespective of COVID-19 status-in patient rooms or reception areas-did correlate with increased rates of seropositivity (11.9% vs 7.5%, p=0.019 and 14.3% vs 9.2%, p=0.025, respectively). In contrast, HCWs with a suspected or proven SARS-CoV-2-infected household contact had significantly higher seropositivity rates than those without such contacts (19.0% vs 8.7%, p<0.001 and 42.1% vs 9.4%, p<0.001, respectively). Finally, consistent use of a mask on public transportation correlated with decreased seroprevalence (5.3% for mask users vs 11.2% for intermittent or no mask use, p=0.030). CONCLUSIONS: The overall seroprevalence was 10% without significant differences in seroprevalence between HCWs exposed to patients with COVID-19 and HCWs not exposed. This suggests that, once fully in place, protective measures limited SARS-CoV-2 occupational acquisition within the hospital environment. SARS-CoV-2 seroconversion among HCWs was associated primarily with community risk factors, particularly household transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , Cross-Sectional Studies , Health Personnel , Humans , Seroepidemiologic Studies , Switzerland/epidemiology , Tertiary Care Centers
SELECTION OF CITATIONS
SEARCH DETAIL